Implications of hydrologic connectivity between hillslopes and riparian zones on streamflow composition

Hydrological responses in mountainous headwater catchments are often highly non-linear with a distinct threshold-related behavior, which is associated to steep hillslopes, shallow soils and strong climatic variability. A holistic understanding of the dominant physical processes that control streamfl...

Full description

Saved in:
Bibliographic Details
Published in:Journal of contaminant hydrology Vol. 169; pp. 62 - 74
Main Authors: von Freyberg, Jana, Radny, Dirk, Gall, Heather E., Schirmer, Mario
Format: Journal Article
Language:English
Published: Kidlington Elsevier B.V 15-11-2014
Elsevier
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Hydrological responses in mountainous headwater catchments are often highly non-linear with a distinct threshold-related behavior, which is associated to steep hillslopes, shallow soils and strong climatic variability. A holistic understanding of the dominant physical processes that control streamflow generation and non-linearity is required in order to assess potential negative effects of agricultural land use and water management in those areas. Therefore, streamflow generation in a small pre-Alpine headwater catchment (Upper Rietholzbach (URHB), ~1km2) was analyzed over a 2-year period by means of rainfall-response analysis and water quality data under explicit consideration of the joint behaviors of climate forcing and shallow groundwater dynamics. The runoff coefficients indicate that only a small fraction of the total catchment area (1–26%) generates streamflow during rainfall events. Hereby, the valley bottom areas (riparian zones) were the most important event-water source whereas only the lower parts of the hillslopes became hydrologically connected to the river network with higher antecedent moisture conditions. However, a distinct threshold-like behavior could not be observed, suggesting a more continuous shift from a riparian-zone to a more hillslope-dominated streamflow hydrograph. Regular manure application on the hillslopes in combinations with lateral hillslope groundwater flux and long groundwater residence times in the riparian zones resulted in a higher mineralization (e.g., total phosphorous) and significant denitrification in the valley bottom area. Despite the important role of the riparian zones for event-flow generation in the URHB, their nutrient buffer capacity is expected to be small due to the low permeability of the local subsurface material. The findings of this integrated analysis are summarized in a conceptual framework describing the hydrological functioning of hillslopes and riparian zones in the URHB. •Landscape properties in mountainous catchments control the hydrologic regime.•Riparian zones dominate streamflow generation during rainfall events.•Antecedent moisture conditions control hillslope groundwater discharge.•Hydrologic connectivity of lower hillslopes affects nutrient export into the stream.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0169-7722
1873-6009
DOI:10.1016/j.jconhyd.2014.07.005