Stratosphere-troposphere exchange: A review, and what we have learned from STACCATO

This paper provides a review of stratosphere‐troposphere exchange (STE), with a focus on processes in the extratropics. It also addresses the relevance of STE for tropospheric chemistry, particularly its influence on the oxidative capacity of the troposphere. After summarizing the current state of k...

Full description

Saved in:
Bibliographic Details
Published in:Journal of Geophysical Research - Atmospheres Vol. 108; no. D12; pp. 8516 - n/a
Main Authors: Stohl, A., Bonasoni, P., Cristofanelli, P., Collins, W., Feichter, J., Frank, A., Forster, C., Gerasopoulos, E., Gäggeler, H., James, P., Kentarchos, T., Kromp-Kolb, H., Krüger, B., Land, C., Meloen, J., Papayannis, A., Priller, A., Seibert, P., Sprenger, M., Roelofs, G. J., Scheel, H. E., Schnabel, C., Siegmund, P., Tobler, L., Trickl, T., Wernli, H., Wirth, V., Zanis, P., Zerefos, C.
Format: Journal Article
Language:English
Published: American Geophysical Union 27-06-2003
Blackwell Publishing Ltd
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This paper provides a review of stratosphere‐troposphere exchange (STE), with a focus on processes in the extratropics. It also addresses the relevance of STE for tropospheric chemistry, particularly its influence on the oxidative capacity of the troposphere. After summarizing the current state of knowledge, the objectives of the project Influence of Stratosphere‐Troposphere Exchange in a Changing Climate on Atmospheric Transport and Oxidation Capacity (STACCATO), recently funded by the European Union, are outlined. Several papers in this Journal of Geophysical Research–Atmospheres special section present the results of this project, of which this paper gives an overview. STACCATO developed a new concept of STE in the extratropics, explored the capacities of different types of methods and models to diagnose STE, and identified their various strengths and shortcomings. Extensive measurements were made in central Europe, including the first monitoring over an extended period of time of beryllium‐10 (10Be), to provide a suitable database for case studies of stratospheric intrusions and for model validation. Photochemical models were used to examine the impact of STE on tropospheric ozone and the oxidizing capacity of the troposphere. Studies of the present interannual variability of STE and projections into the future were made using reanalysis data and climate models.
Bibliography:ArticleID:2002JD002490
istex:B1910C0E3AF41D611490C9AB9147CC4EAAC3A97D
ark:/67375/WNG-CWDFDXQZ-5
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0148-0227
2156-2202
DOI:10.1029/2002JD002490