Systems Biology behind Immunoprotection of Both Sheep and Goats after Sungri/96 PPRV Vaccination
Immune response is a highly coordinated cascade involving all the subsets of peripheral blood mononuclear cells (PBMCs). In this study, RNA sequencing (RNA-Seq) analysis of PBMC subsets was done to delineate the systems biology behind immune protection of the vaccine in sheep and goats. The PBMC sub...
Saved in:
Published in: | mSystems Vol. 6; no. 2 |
---|---|
Main Authors: | , , , , , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
United States
American Society for Microbiology
30-03-2021
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Immune response is a highly coordinated cascade involving all the subsets of peripheral blood mononuclear cells (PBMCs). In this study, RNA sequencing (RNA-Seq) analysis of PBMC subsets was done to delineate the systems biology behind immune protection of the vaccine in sheep and goats. The PBMC subsets studied were CD4
, CD8
, CD14
, CD21
, and CD335
cells from day 0 and day 5 of sheep and goats vaccinated with Sungri/96 peste des petits ruminants virus. Assessment of the immune response processes enriched by the differentially expressed genes (DEGs) in all the subsets suggested a strong dysregulation toward the development of early inflammatory microenvironment, which is very much required for differentiation of monocytes to macrophages, and activation as well as the migration of dendritic cells into the draining lymph nodes. The protein-protein interaction networks among the antiviral molecules (IFIT3, ISG15, MX1, MX2, RSAD2, ISG20, IFIT5, and IFIT1) and common DEGs across PBMC subsets in both species identified ISG15 to be a ubiquitous hub that helps in orchestrating antiviral host response against peste des petits ruminants virus (PPRV). IRF7 was found to be the key master regulator activated in most of the subsets in sheep and goats. Most of the pathways were found to be inactivated in B lymphocytes of both the species, indicating that 5 days postvaccination (dpv) is too early a time point for the B lymphocytes to react. The cell-mediated immune response and humoral immune response pathways were found more enriched in goats than in sheep. Although animals from both species survived the challenge, a contrast in pathway activation was observed in CD335
cells.
Peste des petits ruminants (PPR) by PPR virus (PPRV) is an World Organisation for Animal Health (OIE)-listed acute, contagious transboundary viral disease of small ruminants. The attenuated Sungri/96 PPRV vaccine used all over India against this PPR provides long-lasting robust innate and adaptive immune response. The early antiviral response was found mediated through type I interferon-independent interferon-stimulated gene (ISG) expression. However, systems biology behind this immune response is unknown. In this study,
transcriptome profiling of PBMC subsets (CD4
, CD8
, CD14
, CD21
, and CD335
) in vaccinated goats and sheep (at 5 days postvaccination) was done to understand this systems biology. Though there are a few differences in the systems biology across cells (specially the NK cells) between sheep and goats, the coordinated response that is inclusive of all the cell subsets was found to be toward the induction of a strong innate immune response, which is needed for an appropriate adaptive immune response. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Sajad Ahmad Wani and Manas Ranjan Praharaj contributed equally to this work. Author order was determined in order of seniority. Citation Wani SA, Praharaj MR, Sahu AR, Khan RIN, Saxena S, Rajak KK, Muthuchelvan D, Sahoo A, Mishra B, Singh RK, Mishra BP, Gandham RK. 2021. Systems biology behind immunoprotection of both sheep and goats after Sungri/96 PPRV vaccination. mSystems 6:e00820-20. https://doi.org/10.1128/mSystems.00820-20. |
ISSN: | 2379-5077 2379-5077 |
DOI: | 10.1128/MSYSTEMS.00820-20 |