Factors controlling the flux of organic carbon to the bathypelagic zone of the ocean
Particle fluxes measured with time series sediment traps deployed below 2000 m at 68 sites in the world ocean are combined with satellite‐derived estimates of export production from the overlying water to assess the factors affecting the transfer of particulate organic matter from surface to deep wa...
Saved in:
Published in: | Global biogeochemical cycles Vol. 16; no. 4; pp. 34-1 - 34-20 |
---|---|
Main Authors: | , , , |
Format: | Journal Article |
Language: | English |
Published: |
American Geophysical Union
01-12-2002
Blackwell Publishing Ltd |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Particle fluxes measured with time series sediment traps deployed below 2000 m at 68 sites in the world ocean are combined with satellite‐derived estimates of export production from the overlying water to assess the factors affecting the transfer of particulate organic matter from surface to deep water. Multiple linear regression is used to derive an algorithm suggesting that the transfer efficiency of organic carbon, defined as the settling flux of organic carbon normalized to export production, increases with the flux of carbonate and decreases with water depth and seasonality. The algorithm predicts >80% of the organic carbon transfer efficiency variability in diverse oceanic regions. The influence of the carbonate flux suggests that the ballasting effect of this biogenic mineral may be an important factor promoting export of organic carbon to the deep sea by increasing the density of settling particles. However, the lack of a similar effect for biogenic opal suggests that factors other than particle density also play a role. The adverse effect of increasing seasonality on the transfer efficiency of carbon to the deep sea is tentatively attributed to greater biodegradability of organic matter exported during bloom events. In high latitude opal‐dominated regions with high f‐ratios and seasonality, while a higher fraction of net production is exported, a higher fraction of the exported organic matter is remineralized before reaching bathypelagic depths. On the other hand, in warm, low latitude, carbonate‐dominated regions with low f‐ratios and seasonality, a higher fraction of the exported organic matter sinks to the deep sea. |
---|---|
Bibliography: | ArticleID:2001GB001722 istex:035E4BB265FFCF08F2AE23124CB41A60EF8203C1 ark:/67375/WNG-7GMBBXWN-T ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
ISSN: | 0886-6236 1944-9224 |
DOI: | 10.1029/2001GB001722 |