Assembling Atomically Precise Noble Metal Nanoclusters Using Supramolecular Interactions
Supramolecular chemistry (SC) of noble metal nanoclusters (NMNCs) is one of the fascinating areas of contemporary materials science. It is principally concerned with the noncovalent interactions between NMNCs, as well as between NMNCs and molecules or nanoparticles. This review focuses on recent adv...
Saved in:
Published in: | ACS Nanoscience Au Vol. 2; no. 3; pp. 160 - 178 |
---|---|
Main Authors: | , |
Format: | Journal Article |
Language: | English |
Published: |
United States
American Chemical Society
15-06-2022
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Supramolecular chemistry (SC) of noble metal nanoclusters (NMNCs) is one of the fascinating areas of contemporary materials science. It is principally concerned with the noncovalent interactions between NMNCs, as well as between NMNCs and molecules or nanoparticles. This review focuses on recent advances in the supramolecular assembly of NMNCs and applications of the resulting structures. We have divided the topics into four distinct subgroups: (i) SC of NMNCs in gaseous and solution phases, (ii) supramolecular interactions of NMNCs in crystal lattices, (iii) supramolecular assemblies of NMNCs with nanoparticles and NMNCs, and (iv) SC of NMNCs with other molecules. The last explores their interactions with fullerenes, cyclodextrins, cucurbiturils, crown ethers, and more. After discussing these topics concisely, various emerging properties of the assembled systems in terms of their mechanical, optical, magnetic, charge-transfer, etc. properties and applications are presented. SC is seen to provide a crucial role to induce new physical and chemical properties in such hybrid nanomaterials. Finally, we highlight the scope for expansion and future research in the area. This review would be useful to those working on functional nanostructures in general and NMNCs in particular. |
---|---|
Bibliography: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-3 content type line 23 ObjectType-Review-1 |
ISSN: | 2694-2496 2694-2496 |
DOI: | 10.1021/acsnanoscienceau.1c00046 |