Cryogenic Characterization of FBK RGB-HD SiPMs
We report on the cryogenic characterization of Red Green Blue - High Density (RGB-HD) SiPMs developed at Fondazione Bruno Kessler (FBK) as part of the DarkSide program of dark matter searches with liquid argon time projection chambers. A dedicated setup was used to measure the primary dark noise, th...
Saved in:
Main Authors: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Format: | Journal Article |
Language: | English |
Published: |
12-09-2017
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We report on the cryogenic characterization of Red Green Blue - High Density
(RGB-HD) SiPMs developed at Fondazione Bruno Kessler (FBK) as part of the
DarkSide program of dark matter searches with liquid argon time projection
chambers. A dedicated setup was used to measure the primary dark noise, the
correlated noise, and the gain of the SiPMs at varying temperatures. A
custom-made data acquisition system and analysis software were used to
precisely characterize these parameters. We demonstrate that FBK RGB-HD SiPMs
with low quenching resistance (RGB-HD-LR$_q$) can be operated from 40 K to 300
K with gains in the range $10^5$ to $10^6$ and noise rates on the order of a
few Hz/mm$^2$. |
---|---|
DOI: | 10.48550/arxiv.1705.07028 |