Parabolic subgroups and Automorphism groups of Schubert varieties

Comptes Rendus Mathematique, Volume 356, Issue 5, May 2018, Pages 542-549 Let $G$ be a simple algebraic group of adjoint type over the field $\mathbb{C}$ of complex numbers, $B$ be a Borel subgroup of $G$ containing a maximal torus $T$ of $G.$ Let $w$ be an element of the Weyl group $W$ and $X(w)$ b...

Full description

Saved in:
Bibliographic Details
Main Authors: Kannan, S. Senthamarai, Saha, Pinakinath
Format: Journal Article
Language:English
Published: 13-08-2019
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Comptes Rendus Mathematique, Volume 356, Issue 5, May 2018, Pages 542-549 Let $G$ be a simple algebraic group of adjoint type over the field $\mathbb{C}$ of complex numbers, $B$ be a Borel subgroup of $G$ containing a maximal torus $T$ of $G.$ Let $w$ be an element of the Weyl group $W$ and $X(w)$ be the Schubert variety in $G/B$ corresponding to $w$. In this article we show that given any parabolic subgroup $P$ of $G$ containing $B$ properly, there is an element $w\in W$ such that $P$ is the connected component, containing the identity element of the group of all algebraic automorphisms of $X(w).$
DOI:10.48550/arxiv.1908.04768