Parabolic subgroups and Automorphism groups of Schubert varieties
Comptes Rendus Mathematique, Volume 356, Issue 5, May 2018, Pages 542-549 Let $G$ be a simple algebraic group of adjoint type over the field $\mathbb{C}$ of complex numbers, $B$ be a Borel subgroup of $G$ containing a maximal torus $T$ of $G.$ Let $w$ be an element of the Weyl group $W$ and $X(w)$ b...
Saved in:
Main Authors: | , |
---|---|
Format: | Journal Article |
Language: | English |
Published: |
13-08-2019
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Comptes Rendus Mathematique, Volume 356, Issue 5, May 2018, Pages
542-549 Let $G$ be a simple algebraic group of adjoint type over the field
$\mathbb{C}$ of complex numbers, $B$ be a Borel subgroup of $G$ containing a
maximal torus $T$ of $G.$ Let $w$ be an element of the Weyl group $W$ and
$X(w)$ be the Schubert variety in $G/B$ corresponding to $w$. In this article
we show that given any parabolic subgroup $P$ of $G$ containing $B$ properly,
there is an element $w\in W$ such that $P$ is the connected component,
containing the identity element of the group of all algebraic automorphisms of
$X(w).$ |
---|---|
DOI: | 10.48550/arxiv.1908.04768 |