Topological quantum friction

Phys. Rev. B 97, 161407 (2018) We develop the theory of quantum friction in two-dimensional topological materials. The quantum drag force on a metallic nanoparticle moving above such systems is sensitive to the non-trivial topology of their electronic phases, shows a novel distance scaling law, and...

Full description

Saved in:
Bibliographic Details
Main Authors: Farias, M. Belén, Kort-Kamp, Wilton J. M, Dalvit, Diego A. R
Format: Journal Article
Language:English
Published: 31-10-2017
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Phys. Rev. B 97, 161407 (2018) We develop the theory of quantum friction in two-dimensional topological materials. The quantum drag force on a metallic nanoparticle moving above such systems is sensitive to the non-trivial topology of their electronic phases, shows a novel distance scaling law, and can be manipulated through doping or via the application of external fields. We use the developed framework to investigate quantum friction due to the quantum Hall effect in magnetic field biased graphene, and to topological phase transitions in the graphene family materials. It is shown that topologically non-trivial states in two-dimensional materials enable an increase of two orders of magnitude in the quantum drag force with respect to conventional neutral graphene systems.
DOI:10.48550/arxiv.1711.00063