On the ATLAS Top Mass Measurements and the Potential for Stealth Stop Contamination

The discovery of the stop - the Supersymmetric partner of the top quark - is a key goal of the physics program enabled by the Large Hadron Collider. Although much of the accessible parameter space has already been probed, all current searches assume the top mass is known. This is relevant for the &q...

Full description

Saved in:
Bibliographic Details
Main Authors: Cohen, Timothy, Majewski, Stephanie, Ostdiek, Bryan, Zheng, Peter
Format: Journal Article
Language:English
Published: 04-06-2020
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The discovery of the stop - the Supersymmetric partner of the top quark - is a key goal of the physics program enabled by the Large Hadron Collider. Although much of the accessible parameter space has already been probed, all current searches assume the top mass is known. This is relevant for the "stealth stop" regime, which is characterized by decay kinematics that force the final state top quark off its mass shell; such decays would contaminate the top mass measurements. We investigate the resulting bias imparted to the template method based ATLAS approach. A careful recasting of these results shows that effect can be as large as 2.0 GeV, comparable to the current quoted uncertainty on the top mass. Thus, a robust exploration of the stealth stop splinter requires the simultaneous consideration of the impact on the top mass. Additionally, we explore the robustness of the template technique, and point out a simple strategy for improving the methodology implemented for the semi-leptonic channel.
DOI:10.48550/arxiv.1909.09670