Characterizing the transition from diffuse atomic to dense molecular clouds in the Magellanic clouds with [CII], [CI], and CO
We present and analyze deep Herschel/HIFI observations of the [CII] 158um, [CI] 609um, and [CI] 370um lines towards 54 lines-of-sight (LOS) in the Large and Small Magellanic clouds. These observations are used to determine the physical conditions of the line--emitting gas, which we use to study the...
Saved in:
Main Authors: | , , , , , , , , , , |
---|---|
Format: | Journal Article |
Language: | English |
Published: |
12-04-2017
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We present and analyze deep Herschel/HIFI observations of the [CII] 158um,
[CI] 609um, and [CI] 370um lines towards 54 lines-of-sight (LOS) in the Large
and Small Magellanic clouds. These observations are used to determine the
physical conditions of the line--emitting gas, which we use to study the
transition from atomic to molecular gas and from C^+ to C^0 to CO in their low
metallicity environments. We trace gas with molecular fractions in the range
0.1<f(H2)<1, between those in the diffuse H2 gas detected by UV absorption
(f(H2)<0.2) and well shielded regions in which hydrogen is essentially
completely molecular. The C^0 and CO column densities are only measurable in
regions with molecular fractions f(H2)>0.45 in both the LMC and SMC. Ionized
carbon is the dominant gas-phase form of this element that is associated with
molecular gas, with C^0 and CO representing a small fraction, implying that
most (89% in the LMC and 77% in the SMC) of the molecular gas in our sample is
CO-dark H2. The mean X_CO conversion factors in our LMC and SMC sample are
larger than the value typically found in the Milky Way. When applying a
correction based on the filling factor of the CO emission, we find that the
values of X_CO in the LMC and SMC are closer to that in the Milky Way. The
observed [CII] intensity in our sample represents about 1% of the total
far-infrared intensity from the LOSs observed in both Magellanic Clouds. |
---|---|
DOI: | 10.48550/arxiv.1704.00739 |