Thermal (in)stability of type I collagen fibrils
We measured Young's modulus at temperatures ranging from 20 to 100 ^{\circ}$C for a collagen fibril taken from rat's tendon. The hydration change under heating and the damping decrement were measured as well. At physiological temperatures $25-45^{\circ}$C Young's modulus decreases, wh...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Journal Article |
Language: | English |
Published: |
22-10-2008
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We measured Young's modulus at temperatures ranging from 20 to 100 ^{\circ}$C
for a collagen fibril taken from rat's tendon. The hydration change under
heating and the damping decrement were measured as well. At physiological
temperatures $25-45^{\circ}$C Young's modulus decreases, which can be
interpreted as instability of collagen. For temperatures between
$45-80^{\circ}$C Young's modulus first stabilizes and then increases with
decreasing the temperature. The hydrated water content and the damping
decrement have strong maxima in the interval $70-80^{\circ}$C indicating on
complex inter-molecular structural changes in the fibril. All these effects
disappear after heat-denaturating the sample at $120^\circ$C. Our main result
is a five-stage mechanism by which the instability of a single collagen at
physiological temperatures is compensated by the interaction between collagen
molecules within the fibril. |
---|---|
DOI: | 10.48550/arxiv.0810.4172 |