Microscopic Coexistence of Magnetism and Superconductivity in charge compensated Ba1-xKx(Fe1-yCoy)2As2

We present a detailed investigation of the electronic phase diagram of effectively charge compensated Ba1-xKx(Fe1-yCoy)2As2 with x/2 = y. Our experimental study by means of x-ray diffraction, M\"ossbauer spectroscopy, muon spin relaxation and ac susceptibility measurements on polycrystalline sa...

Full description

Saved in:
Bibliographic Details
Main Authors: Goltz, Til, Zinth, Veronika, Johrendt, Dirk, Rosner, Helge, Pascua, Gwendolyne, Luetkens, Hubertus, Materne, Philipp, Klauss, Hans-Henning
Format: Journal Article
Language:English
Published: 04-02-2014
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We present a detailed investigation of the electronic phase diagram of effectively charge compensated Ba1-xKx(Fe1-yCoy)2As2 with x/2 = y. Our experimental study by means of x-ray diffraction, M\"ossbauer spectroscopy, muon spin relaxation and ac susceptibility measurements on polycrystalline samples is complemented by density functional electronic structure calculations. For low substitution levels of x/2 = y \< 0.13, the system displays an orthorhombically distorted and antiferromagnetically ordered ground state. The low temperature structural and magnetic order parameters are successively reduced with increasing substitution level. We observe a linear relationship between the structural and the magnetic order parameter as a function of temperature and substitution level for x/2 = y \< 0.13. At intermediate substitution levels in the range between 0.13 and 0.19, we find superconductivity with a maximum Tc of 15 K coexisting with static magnetic order on a microscopic length scale. For higher substitution levels x/2 = y \> 0.25 a tetragonal non-magnetic ground state is observed. Our DFT calculations yield a signifcant reduction of the Fe 3d density of states at the Fermi energy and a strong suppression of the ordered magnetic moment in excellent agreement with experimental results. The appearance of superconductivity within the antiferromagnetic state can by explained by the introduction of disorder due to non-magnetic impurities to a system with a constant charge carrier density. Our experimental study by means of x-ray diffraction, M\"ossbauer spectroscopy, muon spin relaxation and ac susceptibility measurements on polycrystalline samples is complemented by density functional electronic structure calculations.
DOI:10.48550/arxiv.1402.0711