The Spitzer Infrared Nearby Galaxies Survey: A High-Resolution Spectroscopy Anthology
Astrophys.J.693:1821-1834,2009 High resolution mid-infrared spectra are presented for 155 nuclear and extranuclear regions from the Spitzer Infrared Nearby Galaxies Survey (SINGS). The fluxes for nine atomic forbidden and three molecular hydrogen mid-infrared emission lines are also provided, along...
Saved in:
Main Authors: | , , , , , , , , , , , , , , , , , , , , |
---|---|
Format: | Journal Article |
Language: | English |
Published: |
25-11-2008
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Astrophys.J.693:1821-1834,2009 High resolution mid-infrared spectra are presented for 155 nuclear and
extranuclear regions from the Spitzer Infrared Nearby Galaxies Survey (SINGS).
The fluxes for nine atomic forbidden and three molecular hydrogen mid-infrared
emission lines are also provided, along with upper limits in key lines for
infrared-faint targets. The SINGS sample shows a wide range in the ratio of
[SIII]18.71um/[SIII]33.48um, but the average ratio of the ensemble indicates a
typical interstellar electron density of 300-400 cm^{-3} on ~23"x15" scales and
500-600 cm^{-3} using ~11"x9" apertures, independent of whether the region
probed is a star-forming nuclear, a star-forming extranuclear, or an AGN
environment. Evidence is provided that variations in gas-phase metallicity play
an important role in driving variations in radiation field hardness, as
indicated by [NeIII]15.56um/[NeII]12.81um, for regions powered by star
formation. Conversely, the radiation hardness for galaxy nuclei powered by
accretion around a massive black hole is independent of metal abundance.
Furthermore, for metal-rich environments AGN are distinguishable from
star-forming regions by significantly larger [NeIII]15.56um/[NeII]12.81um
ratios. Finally, [FeII]25.99um/[NeII]12.81um versus [SiII]34.82um/[SIII]33.48um
also provides an empirical method for discerning AGN from normal star-forming
sources. However, similar to [NeIII]15.56um/[NeII]12.81um, these mid-infrared
line ratios lose their AGN/star-formation diagnostic powers for very low
metallicity star-forming systems with hard radiation fields. |
---|---|
DOI: | 10.48550/arxiv.0811.4190 |