Beating the classical limit: A diffraction-limited spectrograph for an arbitrary input beam

Optics Express, Vol. 21, Issue 22, pp. 26103-26112 (2013) We demonstrate a new approach to classical fiber-fed spectroscopy. Our method is to use a photonic lantern that converts an arbitrary (e.g. incoherent) input beam into N diffraction-limited outputs. For the highest throughput, the number of o...

Full description

Saved in:
Bibliographic Details
Main Authors: Betters, Christopher H, Leon-Saval, Sergio G, Robertson, J. Gordon, Bland-Hawthorn, Joss
Format: Journal Article
Language:English
Published: 17-10-2013
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Optics Express, Vol. 21, Issue 22, pp. 26103-26112 (2013) We demonstrate a new approach to classical fiber-fed spectroscopy. Our method is to use a photonic lantern that converts an arbitrary (e.g. incoherent) input beam into N diffraction-limited outputs. For the highest throughput, the number of outputs must be matched to the total number of unpolarized spatial modes on input. This approach has many advantages: (i) after the lantern, the instrument is constructed from 'commercial off the shelf' components; (ii) the instrument is the minimum size and mass configuration at a fixed resolving power and spectral order (~shoebox sized in this case); (iii) the throughput is better than 60% (slit to detector, including detector QE of ~80%); (iv) the scattered light at the detector can be less than 0.1% (total power). Our first implementation operates over 1545-1555 nm (limited by the detector, a 640$\times$512 array with 20$\mu$m pitch) with a spectral resolution of 0.055nm (R~30,000) using a 1$\times$7 (1 multi-mode input to 7 single-mode outputs) photonic lantern. This approach is a first step towards a fully integrated, multimode photonic microspectrograph.
DOI:10.48550/arxiv.1310.4833