The Incidence of Highly-Obscured Star-Forming Regions in SINGS Galaxies
Astrophys.J. 668 (2007) 182-202 Using the new capabilities of the Spitzer Space Telescope and extensive multiwavelength data from the Spitzer Infrared Nearby Galaxies Survey (SINGS), it is now possible to study the infrared properties of star formation in nearby galaxies down to scales equivalent to...
Saved in:
Main Authors: | , , , , , , , , , , , , , , , , |
---|---|
Format: | Journal Article |
Language: | English |
Published: |
24-06-2007
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Astrophys.J. 668 (2007) 182-202 Using the new capabilities of the Spitzer Space Telescope and extensive
multiwavelength data from the Spitzer Infrared Nearby Galaxies Survey (SINGS),
it is now possible to study the infrared properties of star formation in nearby
galaxies down to scales equivalent to large HII regions. We are therefore able
to determine what fraction of large, infrared-selected star-forming regions in
normal galaxies are highly obscured and address how much of the star formation
we miss by relying solely on the optical portion of the spectrum. Employing a
new empirical method for deriving attenuations of infrared-selected
star-forming regions we investigate the statistics of obscured star formation
on 500pc scales in a sample of 38 nearby galaxies. We find that the median
attenuation is 1.4 magnitudes in H-alpha and that there is no evidence for a
substantial sub-population of uniformly highly-obscured star-forming regions.
The regions in the highly-obscured tail of the attenuation distribution
(A_H-alpha > 3) make up only ~4% of the sample of nearly 1800 regions, though
very embedded infrared sources on the much smaller scales and lower
luminosities of compact and ultracompact HII regions are almost certainly
present in greater numbers. The highly-obscured cases in our sample are
generally the bright, central regions of galaxies with high overall attenuation
but are not otherwise remarkable. We also find that a majority of the galaxies
show decreasing radial trends in H-alpha attenuation. The small fraction of
highly-obscured regions seen in this sample of normal, star-forming galaxies
suggests that on 500pc scales the timescale for significant dispersal or break
up of nearby, optically-thick dust clouds is short relative to the lifetime of
a typical star-forming region. |
---|---|
DOI: | 10.48550/arxiv.0706.3501 |