Non-monotonic spin relaxation and decoherence in graphene quantum dots with spin-orbit interactions

Phys. Rev. B 89, 115427 (2014) We investigate the spin relaxation and decoherence in a single-electron graphene quantum dot with Rashba and intrinsic spin-orbit interactions. We derive an effective spin-phonon Hamiltonian via the Schrieffer-Wolff transformation in order to calculate the spin relaxat...

Full description

Saved in:
Bibliographic Details
Main Authors: Hachiya, Marco O, Burkard, Guido, Egues, J. Carlos
Format: Journal Article
Language:English
Published: 17-07-2013
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Phys. Rev. B 89, 115427 (2014) We investigate the spin relaxation and decoherence in a single-electron graphene quantum dot with Rashba and intrinsic spin-orbit interactions. We derive an effective spin-phonon Hamiltonian via the Schrieffer-Wolff transformation in order to calculate the spin relaxation time T_1 and decoherence time T_2 within the framework of the Bloch-Redfield theory. In this model, the emergence of a non-monotonic dependence of T_1 on the external magnetic field is attributed to the Rashba spin-orbit coupling-induced anticrossing of opposite spin states. A rapid decrease of T_1 occurs when the spin and orbital relaxation rates become comparable in the vicinity of the spin-mixing energy-level anticrossing. By contrast, the intrinsic spin-orbit interaction leads to a monotonic magnetic field dependence of the spin relaxation rate which is caused solely by the direct spin-phonon coupling mechanism. Within our model, we demonstrate that the decoherence time T_2 ~ 2 T_1 is dominated by relaxation processes for the electron-phonon coupling mechanisms in graphene up to leading order in the spin-orbit interaction. Moreover, we show that the energy anticrossing also leads to a vanishing pure spin dephasing rate for these states for a super-Ohmic bath.
DOI:10.48550/arxiv.1307.4668