Self-limited oxide formation in Ni(111) oxidation
Phys. Rev. B 84, 115441 (2011) The oxidation of the Ni(111) surface is studied experimentally with low energy electron microscopy and theoretically by calculating the electron reflectivity for realistic models of the NiO/Ni(111) surface with an ab-initio scattering theory. Oxygen exposure at 300 K u...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Journal Article |
Language: | English |
Published: |
07-03-2012
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Phys. Rev. B 84, 115441 (2011) The oxidation of the Ni(111) surface is studied experimentally with low
energy electron microscopy and theoretically by calculating the electron
reflectivity for realistic models of the NiO/Ni(111) surface with an ab-initio
scattering theory. Oxygen exposure at 300 K under ultrahigh-vacuum conditions
leads to the formation of a continuous NiO(111)-like film consisting of
nanosized domains. At 750 K, we observe the formation of a nano-heterogeneous
film composed primarily of NiO(111)-like surface oxide nuclei, which exhibit
virtually the same energy-dependent reflectivity as in the case of 300 K and
which are separated by oxygen-free Ni(111) terraces. The scattering theory
explains the observed normal incidence reflectivity R(E) of both the clean and
the oxidized Ni(111) surface. At low energies R(E) of the oxidized surface is
determined by a forbidden gap in the k_parallel=0 projected energy spectrum of
the bulk NiO crystal. However, for both low and high temperature oxidation a
rapid decrease of the reflectivity in approaching zero kinetic energy is
experimentally observed. This feature is shown to characterize the thickness of
the oxide layer, suggesting an average oxide thickness of two NiO layers. |
---|---|
DOI: | 10.48550/arxiv.1104.3481 |