Primitive olivine-phyric shergottite NWA 5789: Petrography, mineral chemistry, and cooling history imply a magma similar to Yamato-980459
– Knowledge of Martian igneous basaltic compositions is crucial for constraining mantle evolution, including early differentiation and mantle convection. Primitive magmas provide direct information about their mantle source regions, but most Martian meteorites either contain cumulate olivine or crys...
Saved in:
Published in: | Meteoritics & planetary science Vol. 46; no. 1; pp. 116 - 133 |
---|---|
Main Authors: | , , , |
Format: | Journal Article |
Language: | English |
Published: |
Oxford, UK
Blackwell Publishing Ltd
01-01-2011
Wiley Subscription Services, Inc |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | –
Knowledge of Martian igneous basaltic compositions is crucial for constraining mantle evolution, including early differentiation and mantle convection. Primitive magmas provide direct information about their mantle source regions, but most Martian meteorites either contain cumulate olivine or crystallized from fractionated melts. The recently discovered Martian meteorite Northwest Africa (NWA) 5789 is an olivine‐phyric shergottite. NWA 5789 has special significance among the Martian meteorites because it appears to represent one of the most magnesian Martian magmas known, other than Yamato (Y) 980459. Its most magnesian olivine cores (Fo85) are in Mg‐Fe equilibrium with a magma of the bulk rock composition, suggesting that the bulk represents a magma composition. Based on the Al/Ti ratio of its pyroxenes, we infer that the rock began to crystallize at a high pressure consistent with conditions in Mars’ lower crust/upper mantle. It continued and completed its crystallization closer to the surface, where cooling was rapid and produced a mesostasis of radiating sprays of plagioclase and pyroxene. The mineralogy, petrology, mineral chemistry, and bulk rock composition of NWA 5789 are very similar to those of Y‐980459. The similarities between the two meteorites suggest that NWA 5789 (like Y‐980459) represents a primitive, mantle‐derived magma composition. They also suggest the possibility that NWA 5789 and Y‐980459 formed in the same lava flow. However, based on the mineralogy and texture of its mesostasis, NWA 5789 must have cooled more slowly than Y‐980459. NWA 5789 will help elucidate the igneous geology and geochemistry of Mars. |
---|---|
Bibliography: | istex:0DE34CF31ED2C8BBEA689BE3AC0D74FFC6A96C78 ArticleID:MAPS1152 ark:/67375/WNG-01HLRGMQ-9 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1086-9379 1945-5100 |
DOI: | 10.1111/j.1945-5100.2010.01152.x |