Single-Pot Reductive Rearrangement of Furfural to Cyclopentanone over Silica-Supported Pd Catalysts

Direct one-pot hydrogenation of furfural (FFR) to cyclopentanone (CPO) was investigated over different silica-supported Pd catalysts. Among these, 4% Pd on fumed silica (4%Pd/f-SiO2) showed remarkable results, achieving almost 98% furfural (FFR) conversion with ∼89% selectivity and 87% yield to cycl...

Full description

Saved in:
Bibliographic Details
Published in:ACS omega Vol. 3; no. 8; pp. 9860 - 9871
Main Authors: Date, Nandan S, Kondawar, Sharda E, Chikate, Rajeev C, Rode, Chandrashekhar V
Format: Journal Article
Language:English
Published: United States American Chemical Society 31-08-2018
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Direct one-pot hydrogenation of furfural (FFR) to cyclopentanone (CPO) was investigated over different silica-supported Pd catalysts. Among these, 4% Pd on fumed silica (4%Pd/f-SiO2) showed remarkable results, achieving almost 98% furfural (FFR) conversion with ∼89% selectivity and 87% yield to cyclopentanone at 165 °C and 500 psig H2 pressure. More interestingly, the fumed-silica-supported catalyst tuned the selectivity toward the rearrangement product, i.e., cyclopentanone, whereas all of the other supports were found to give ring hydrogenation as well as side chain hydrogenation products due to their parent Brönsted acidity and specific support properties. X-ray diffraction data revealed the presence of different phases of the face-centered cubic lattice of metallic Pd along with lowest crystallite size of 15.6 nm in the case of the silica-supported Pd catalyst. However, Pd particle size was found to be in the range of 5–13 nm with even dispersion over the silica support, confirmed by high-resolution transmission electron microscopy analysis. While studying the effect of reaction parameters, it was observed that lower temperature gave low furfural conversion of 58% with only 51% CPO selectivity. Similarly, higher H2 pressure lowered CPO selectivity with subsequent increase in 2-methyl furan and ring hydrogenation product 2-methyl furan and 2-methyl tetrahydrofuran. Thus, as per the requirement, the product selectivity can be tuned by varying the type of support and/or the reaction parameters suitably. With the help of several control experiments and the characterization data, a plausible reaction pathway was proposed for the selective formation of cyclopentanone.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2470-1343
2470-1343
DOI:10.1021/acsomega.8b00980