Stable, Dual Redox Unit Organic Electrodes
The development of organic materials for electrochemical energy storage has attracted great attention because of their high natural abundance and relatively low toxicity. The bulk of these studies focus on small molecules, polymers, or porous/framework-type materials that employ one type of redox mo...
Saved in:
Published in: | ACS omega Vol. 5; no. 2; pp. 1134 - 1141 |
---|---|
Main Authors: | , , |
Format: | Journal Article |
Language: | English |
Published: |
United States
American Chemical Society
21-01-2020
|
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The development of organic materials for electrochemical energy storage has attracted great attention because of their high natural abundance and relatively low toxicity. The bulk of these studies focus on small molecules, polymers, or porous/framework-type materials that employ one type of redox moiety. Here, we report the synthesis and testing of organic materials that incorporate two distinct types of redox units: triptycene-based quinones and perylene diimides. We examine this “dual redox” concept through the synthesis of both frameworks and small molecule model compounds with the redox units positioned at the vertices and connection points. Such a design increases the theoretical capacity of the material. It also imparts high stability because both examples are relatively rigid and highly insoluble in the electrolyte. Lithium-ion batteries consisting of the framework and the small molecule have an excellent cycling retention of 75 and 77%, respectively, over 500 cycles at 1 C. Our work emphasizes the advantages of using multiple redox units in the design of the cathodic materials and redox-active triptycene linkages to achieve high cycling stability. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 2470-1343 2470-1343 |
DOI: | 10.1021/acsomega.9b03355 |