Room-Temperature Routes Toward the Creation of Zinc Oxide Films from Molecular Precursors

The fabrication of “flexible” electronics on plastic substrates with low melting points requires the development of thin-film deposition techniques that operate at low temperatures. This is easily achieved with vacuum- or solution-processed molecular or polymeric semiconductors, but oxide materials...

Full description

Saved in:
Bibliographic Details
Published in:ACS omega Vol. 2; no. 1; pp. 98 - 104
Main Authors: Gonzalez Arellano, D. Leonardo, Bhamrah, Jasvir, Yang, Junwei, Gilchrist, James B., McComb, David W., Ryan, Mary P., Heutz, Sandrine
Format: Journal Article
Language:English
Published: United States American Chemical Society 31-01-2017
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The fabrication of “flexible” electronics on plastic substrates with low melting points requires the development of thin-film deposition techniques that operate at low temperatures. This is easily achieved with vacuum- or solution-processed molecular or polymeric semiconductors, but oxide materials remain a significant challenge. Here, we show that zinc oxide (ZnO) can be prepared using only room-temperature processes, with the molecular thin-film precursor zinc phthalocyanine (ZnPc), followed by UV-light treatment in vacuum to elicit degradation of the organic components and transformation of the deposited film to the oxide material. The degradation mechanism was assessed by studying the influence of the atmosphere during the reaction: it was particularly sensitive to the oxygen pressure in the chamber and optimal degradation conditions were established as 3 mbar with 40% oxygen in nitrogen. The morphology of the film remained relatively unchanged during the reaction, but a detailed analysis of its composition using both scanning transmission electron microscopy and secondary ion mass spectrometry revealed that a 40 nm thick layer containing ZnO results from the 100 nm thick precursor after complete reaction. Our methodology represents a simple route for the fabrication of oxides and multilayer structures that can be easily integrated into current molecular thin-film growth setups, without the need for a high-temperature step.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2470-1343
2470-1343
DOI:10.1021/acsomega.6b00324