Methylothon: a Versatile Course-Based High School Research Experience in Microbiology and Bioinformatics with Pink Bacteria
Methylothon is an inquiry-based high school learning module in microbial ecology, molecular biology, and bioinformatics that centers around pink-pigmented plant-associated methylotrophic bacteria. Here, we present an overview of the module's learning goals, describe course resources (available...
Saved in:
Published in: | Journal of microbiology & biology education Vol. 23; no. 2 |
---|---|
Main Authors: | , , , , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
United States
American Society for Microbiology
01-08-2022
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Methylothon is an inquiry-based high school learning module in microbial ecology, molecular biology, and bioinformatics that centers around pink-pigmented plant-associated methylotrophic bacteria. Here, we present an overview of the module's learning goals, describe course resources (available for public use at http://methylothon.com), and relate lessons learned from adapting Methylothon for remote learning during the pandemic in spring of 2021. This curriculum description is intended not only for instructors but also for microbial ecology researchers with an interest in conducting K-12 outreach. The original in-person version of the module allows students to isolate their own strains of methylotrophic bacteria from plants they sample from the environment, to identify these using PCR, sequencing, and phylogenetic analysis, and to contribute their strains to original research in a university lab. The adapted version strengthens the focus on bioinformatics and increases its flexibility and accessibility by making the lab portion optional and adopting free web-based tools. Student feedback and graded assignments from spring 2021 revealed that the lesson was especially effective at introducing the concepts of BLAST and phylogenetic trees and that students valued and felt inspired by the opportunity to conduct hands-on work and to participate in community science. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 The authors declare no conflict of interest. Present address: Jessica A. Lee, Space Biosciences Research Branch, NASA Ames Research Center, Moffett Field, California, United States. |
ISSN: | 1935-7877 1935-7885 |
DOI: | 10.1128/jmbe.00227-21 |