Electron Diffraction on Flash-Frozen Cowlesite Reveals the Structure of the First Two-Dimensional Natural Zeolite
Cowlesite, ideally Ca6Al12Si18O60·36H2O, is to date the only natural zeolite whose structure could not be determined by X-ray methods. In this paper, we present the ab initio structure determination of this mineral obtained by three-dimensional (3D) electron diffraction data collected from single-cr...
Saved in:
Published in: | ACS central science Vol. 6; no. 9; pp. 1578 - 1586 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
American Chemical Society
23-09-2020
|
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Cowlesite, ideally Ca6Al12Si18O60·36H2O, is to date the only natural zeolite whose structure could not be determined by X-ray methods. In this paper, we present the ab initio structure determination of this mineral obtained by three-dimensional (3D) electron diffraction data collected from single-crystal domains of a few hundreds of nanometers. The structure of cowlesite consists of an alternation of rigid zeolitic layers and low-density interlayers supported by water and cations. This makes cowlesite the only two-dimensional (2D) zeolite known in nature. When cowlesite gets in contact with a transmission electron microscope vacuum, a phase transition to a conventional 3D zeolite framework occurs in few seconds. The original cowlesite structure could be preserved only by adopting a cryo-plunging sample preparation protocol usually employed for macromolecular samples. Such a protocol allows the investigation by 3D electron diffraction of very hydrated and very beam-sensitive inorganic materials, which were previously considered intractable by transmission electron microscopy crystallographic methods. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 2374-7943 2374-7951 |
DOI: | 10.1021/acscentsci.9b01100 |