Protein Encapsulation in Mesoporous Silicate: The Effects of Confinement on Protein Stability, Hydration, and Volumetric Properties
On the basis of the predictions of statistical−thermodynamic models, it is postulated that excluded volume effects may play a significant role in the stability, interaction, and function of proteins. We studied the effects of confinement on protein un/refolding and stability. Our approach was to enc...
Saved in:
Published in: | Journal of the American Chemical Society Vol. 126; no. 39; pp. 12224 - 12225 |
---|---|
Main Authors: | , , , |
Format: | Journal Article |
Language: | English |
Published: |
Washington, DC
American Chemical Society
06-10-2004
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | On the basis of the predictions of statistical−thermodynamic models, it is postulated that excluded volume effects may play a significant role in the stability, interaction, and function of proteins. We studied the effects of confinement on protein un/refolding and stability. Our approach was to encapsulate a model protein, RNase A, in a mesoporous silica, MCM-48, with glasslike wall structure and with well-defined pores to create a crowded microenvironment. To the best of our knowledge, this is the first report where pressure perturbation and differential scanning calorimetric techniques are employed to evaluate the stability, hydration, and volumetric properties of the confined protein. A drastic increase in protein stability (∼30 °C increase in unfolding temperature) is observed. The increase in stability is probably not only due to a restriction in conformational space (excluded volume effect due to nonspecific interactions) but also due to an increased strength of hydration of the protein within the narrow silica pores. |
---|---|
Bibliography: | ark:/67375/TPS-TN2PNFJL-N istex:C56E8FACD3C552255770BAAAF51B4E58DF63B087 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0002-7863 1520-5126 |
DOI: | 10.1021/ja046900n |