Green Synthesis of Reusable Adsorbents for the Removal of Heavy Metal Ions
Industrial wastewater often contains heavy metals, like lead, copper, nickel, cadmium, zinc, mercury, arsenic, and chromium. Overdoses of heavy metals will impose a severe threat to human health. Adsorption is the most efficient way of wastewater treatment for eliminating heavy metals. A novel mater...
Saved in:
Published in: | ACS omega Vol. 6; no. 45; pp. 30478 - 30487 |
---|---|
Main Authors: | , , , |
Format: | Journal Article |
Language: | English |
Published: |
American Chemical Society
16-11-2021
|
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Industrial wastewater often contains heavy metals, like lead, copper, nickel, cadmium, zinc, mercury, arsenic, and chromium. Overdoses of heavy metals will impose a severe threat to human health. Adsorption is the most efficient way of wastewater treatment for eliminating heavy metals. A novel material-reusable hydrogel-based adsorbent was developed in overcoming the regeneration issue. The polyethylene glycol diacrylate-3-sulfopropyl methacrylate potassium salt (PEGDA-SMP) hydrogel performed an ion-exchange rate to remove heavy metals from wastewater in 30–120 min. The adsorption capacity of PEGDA-SMP increases the increasing pH of a solution, in which pH 5 reaches the maximum. Pseudo-second-order adsorption and the Langmuir adsorption model can fully describe the adsorption properties of PEGDA-SMP for heavy metals. PEGDA-SMP prefers to exchange Pb2+ through K+, and its adsorption capacity can achieve 263.158 mg/g. Ag+, Zn2+, Ni2+, and Cu2+ were 227.27, 117.647, 102.041, and 99.010 mg/g, respectively. The hydrated ionic radius of the heavy metal might play an essential role to affect the adsorption preference. The removal efficiency of heavy metals can approach over 95% for each heavy metal. PEGDA-SMP performs rapid desorption and reaches desorption equilibrium in 15 min. After 10 consecutive adsorption–desorption cycles, the adsorption capacity remained over 90%. The hydrogel developed in this study showed reversible heavy metal absorption. Therefore, excellent adsorption–desorption properties of PEGDA-SMP can be potentially extended to industrial wastewater for removing heavy metals. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 2470-1343 2470-1343 |
DOI: | 10.1021/acsomega.1c03879 |