Photochemical Formation of Singlet Molecular Oxygen in Illuminated Aqueous Solutions of Several Commercially Available Sunscreen Active Ingredients

Evidence is presented for the photochemical formation of singlet molecular oxygen (1O2) in air-saturated aqueous solutions of several sunscreen active ingredients using sunlight-range illumination. This is of significance because (1) 1O2 is known to be cytotoxic, and (2) there have been several repo...

Full description

Saved in:
Bibliographic Details
Published in:Chemical research in toxicology Vol. 9; no. 3; pp. 605 - 609
Main Authors: Allen, John M, Gossett, Cynthia J, Allen, Sandra K
Format: Journal Article
Language:English
Published: United States American Chemical Society 01-04-1996
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Evidence is presented for the photochemical formation of singlet molecular oxygen (1O2) in air-saturated aqueous solutions of several sunscreen active ingredients using sunlight-range illumination. This is of significance because (1) 1O2 is known to be cytotoxic, and (2) there have been several reports of toxic effects associated with the use of some sunscreens; most notably, with p-aminobenzoic acid (PABA). Illuminated aqueous solutions of PABA, 2-ethylhexyl p-(dimethylamino)benzate (ODPABA), 2-hydroxy-4-methoxybenzophenone (BZ3), 2,2‘-dihydroxy-4-methoxybenzophenone (BZ8), 2-ethylhexyl 2-cyano-3,3-diphenylacrylate (OCR), 2-ethylhexyl p-methoxycinnamate (OMC), and 2-ethylhexyl salicylate (OCS) were evaluated individually for 1O2 formation. Furfuryl alcohol (FFA), a well-known chemical trap for 1O2, was added to each of the aqueous sunscreen solutions. The FFA was consumed when solutions of PABA, ODPABA, OMC, and OCR were illuminated, but no loss of FFA other than by direct photolysis occurred in solutions of BZ3, BZ8, or OCS. There was also no significant loss of FFA in any of these solutions kept in the dark. Further evidence for the formation of 1O2 in illuminated aqueous sunscreen solutions is provided by the results of experiments in which individual solutions containing sunscreen active ingredients and FFA that were diluted with D2O exhibited an increased rate of FFA consumption while the addition of azide ion (N3 -) reduced the rate of FFA consumption. Continuous sunlight-range illumination of aqueous PABA solutions produced significantly higher steady-state concentrations of 1O2 than in solutions containing any of the other sunscreen active ingredients evaluated. The substituted benzophenone compounds (BZ3 and BZ8) and the salicylate-based compound (OCS) not only appear to produce no 1O2, but they also appear to produce no other reactive oxidant species that are capable of consuming FFA. This indicates that BZ3, BZ8, and OCS may be preferable, from the standpoint of toxic oxidant formation, for use as sunscreen active ingredients when compared to the other compounds evaluated in this study.
Bibliography:Abstract published in Advance ACS Abstracts, March 1, 1996.
ark:/67375/TPS-71TZ161W-C
istex:AA12FBC4C8C133CB7D6C19EF0CA2274279F71F38
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0893-228X
1520-5010
DOI:10.1021/tx950197m