Zeolite-Templated Carbon as an Ordered Microporous Electrode for Aluminum Batteries

High surface area porous carbon frameworks exhibit potential advantages over crystalline graphite as an electrochemical energy storage material owing to the possibility of faster ion transport and up to double the ion capacity, assuming a surface-based mechanism of storage. When detrimental surface-...

Full description

Saved in:
Bibliographic Details
Published in:ACS nano Vol. 11; no. 2; pp. 1911 - 1919
Main Authors: Stadie, Nicholas P, Wang, Shutao, Kravchyk, Kostiantyn V, Kovalenko, Maksym V
Format: Journal Article
Language:English
Published: United States American Chemical Society 28-02-2017
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:High surface area porous carbon frameworks exhibit potential advantages over crystalline graphite as an electrochemical energy storage material owing to the possibility of faster ion transport and up to double the ion capacity, assuming a surface-based mechanism of storage. When detrimental surface-related effects such as irreversible capacity loss due to interphase formation (known as solid-electrolyte interphase, SEI) can be mitigated or altogether avoided, the greatest advantage can be achieved by maximizing the gravimetric and volumetric surface area and by tailoring the porosity to accommodate the relevant ion species. We investigate this concept by employing zeolite-templated carbon (ZTC) as the cathode in an aluminum battery based on a chloroaluminate ionic liquid electrolyte. Its ultrahigh surface area and dense, conductive network of homogeneous channels (12 Å in width) render ZTC suitable for the fast, dense storage of AlCl4 – ions (6 Å in ionic diameter). With aluminum as the anode, full cells were prepared which simultaneously exhibited both high specific energy (up to 64 Wh kg–1, 30 Wh L–1) and specific power (up to 290 W kg–1, 93 W L–1), highly stable cycling performance, and complete reversibility within the potential range of 0.01–2.20 V.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1936-0851
1936-086X
DOI:10.1021/acsnano.6b07995