Elevated Concentrations of U and Co-occurring Metals in Abandoned Mine Wastes in a Northeastern Arizona Native American Community

The chemical interactions of U and co-occurring metals in abandoned mine wastes in a Native American community in northeastern Arizona were investigated using spectroscopy, microscopy and aqueous chemistry. The concentrations of U (67–169 μg L–1) in spring water samples exceed the EPA maximum contam...

Full description

Saved in:
Bibliographic Details
Published in:Environmental science & technology Vol. 49; no. 14; pp. 8506 - 8514
Main Authors: Blake, Johanna M, Avasarala, Sumant, Artyushkova, Kateryna, Ali, Abdul-Mehdi S, Brearley, Adrian J, Shuey, Christopher, Robinson, Wm. Paul, Nez, Christopher, Bill, Sadie, Lewis, Johnnye, Hirani, Chris, Pacheco, Juan S. Lezama, Cerrato, José M
Format: Journal Article
Language:English
Published: United States American Chemical Society 21-07-2015
American Chemical Society (ACS)
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The chemical interactions of U and co-occurring metals in abandoned mine wastes in a Native American community in northeastern Arizona were investigated using spectroscopy, microscopy and aqueous chemistry. The concentrations of U (67–169 μg L–1) in spring water samples exceed the EPA maximum contaminant limit of 30 μg L–1. Elevated U (6,614 mg kg–1), V (15,814 mg kg–1), and As (40 mg kg–1) concentrations were detected in mine waste solids. Spectroscopy (XPS and XANES) solid analyses identified U (VI), As (-I and III) and Fe (II, III). Linear correlations for the release of U vs V and As vs Fe were observed for batch experiments when reacting mine waste solids with 10 mM ascorbic acid (∼pH 3.8) after 264 h. The release of U, V, As, and Fe was at least 4-fold lower after reaction with 10 mM bicarbonate (∼pH 8.3). These results suggest that U–V mineral phases similar to carnotite [K2(UO2)2V2O8] and As–Fe-bearing phases control the availability of U and As in these abandoned mine wastes. Elevated concentrations of metals are of concern due to human exposure pathways and exposure of livestock currently ingesting water in the area. This study contributes to understanding the occurrence and mobility of metals in communities located close to abandoned mine waste sites.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
USDOE Office of Science (SC)
1345169; IIA-1301346
ISSN:0013-936X
1520-5851
DOI:10.1021/acs.est.5b01408