Amphiphilic Network as Nanoreactor for Enzymes in Organic Solvents
Enzymes are powerful biocatalysts that work naturally in water but are also active in organic solvents. Here, we present a nanophase-separated amphiphilic network, where an enzyme is entrapped into its hydrophilic domains. A substrate that diffuses into the other, hydrophobic, phase of such a networ...
Saved in:
Published in: | Nano letters Vol. 5; no. 1; pp. 45 - 48 |
---|---|
Main Authors: | , |
Format: | Journal Article |
Language: | English |
Published: |
Washington, DC
American Chemical Society
01-01-2005
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Enzymes are powerful biocatalysts that work naturally in water but are also active in organic solvents. Here, we present a nanophase-separated amphiphilic network, where an enzyme is entrapped into its hydrophilic domains. A substrate that diffuses into the other, hydrophobic, phase of such a network can access the biocatalyst via the extremely large interface. Entrapped horseradish peroxidase and chloroperoxidase showed dramatically increased activity and operational stability compared to the native enzymes. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1530-6984 1530-6992 |
DOI: | 10.1021/nl048413b |