Estimation of Seismic Demands on Isolators Based on Nonlinear Analysis

A procedure based on rigorous nonlinear analysis that estimates the deformation and force of an isolator due to strong ground motion is presented. The procedure offers an alternative to the iterative equivalent-linear methods used by current U.S. building codes. The governing equation is reduced to...

Full description

Saved in:
Bibliographic Details
Published in:Journal of structural engineering (New York, N.Y.) Vol. 130; no. 3; pp. 392 - 402
Main Authors: Ryan, Keri L, Chopra, Anil K
Format: Journal Article
Language:English
Published: American Society of Civil Engineers 01-03-2004
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A procedure based on rigorous nonlinear analysis that estimates the deformation and force of an isolator due to strong ground motion is presented. The procedure offers an alternative to the iterative equivalent-linear methods used by current U.S. building codes. The governing equation is reduced to a form such that the median normalized deformation of the system due to an ensemble of ground motions with a given corner period Td is found to depend on only two parameters: the natural period, defined from the postyield stiffness, and the normalized strength, or strength normalized by peak ground velocity. The dispersion of normalized deformation for an ensemble of ground motions is shown to be small, implying that the median normalized deformation is a meaningful estimate of response. The simple trends shown by the median normalized deformation led to the development of suitable design equations for isolator deformation. These design equations reflect a 13% increase when the excitation includes two lateral components of ground motion instead of just one component. For comparison, deformations estimated by the equivalent-linear method are unconservative by up to 50% compared to those found from the more accurate nonlinear spectrum, and building codes include at most a 4.4% increase for a second component.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0733-9445
1943-541X
DOI:10.1061/(ASCE)0733-9445(2004)130:3(392)