N‑Terminal Acetylation Affects α‑Synuclein Fibril Polymorphism
Parkinson’s disease etiology involves amyloid formation by α-synuclein (αSyn). In vivo, αSyn is constitutively acetylated at the α-amino N-terminus. Here, we find N-terminally acetylated αSyn (Ac-αSyn) aggregates more slowly than non-acetylated αSyn (NH3-αSyn) with significantly reduced sensitivity...
Saved in:
Published in: | Biochemistry (Easton) Vol. 58; no. 35; pp. 3630 - 3633 |
---|---|
Main Authors: | , |
Format: | Journal Article |
Language: | English |
Published: |
United States
American Chemical Society
03-09-2019
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Parkinson’s disease etiology involves amyloid formation by α-synuclein (αSyn). In vivo, αSyn is constitutively acetylated at the α-amino N-terminus. Here, we find N-terminally acetylated αSyn (Ac-αSyn) aggregates more slowly than non-acetylated αSyn (NH3-αSyn) with significantly reduced sensitivity to thioflavin T (ThT). Fibril differences were characterized by transmission electron microscopy, circular dichroism spectroscopy, and limited proteolysis. Interestingly, the low-ThT Ac-αSyn fibrils seed both acetylated and non-acetylated αSyn and faithfully propagate the low-ThT character through several generations, indicating a stable fibril polymorph. In contrast, the high-ThT NH3-αSyn seeds lose fidelity over subsequent generations. Despite it being outside of the amyloid core, the chemical nature of the N-terminus modulates αSyn aggregation and fibril polymorphism. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0006-2960 1520-4995 |
DOI: | 10.1021/acs.biochem.9b00629 |