Novel p-Arylthio Cinnamides as Antagonists of Leukocyte Function-Associated Antigen-1/Intracellular Adhesion Molecule-1 Interaction. 2. Mechanism of Inhibition and Structure-Based Improvement of Pharmaceutical Properties
The interaction between leukocyte function-associated antigen-1 (LFA-1) and intracellular adhesion molecule-1 (ICAM-1) has been implicated in inflammatory and immune diseases. Recently, a novel series of p-arylthio cinnamides has been described as potent antagonists of the LFA-1/ICAM-1 interaction....
Saved in:
Published in: | Journal of medicinal chemistry Vol. 44; no. 8; pp. 1202 - 1210 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Washington, DC
American Chemical Society
12-04-2001
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The interaction between leukocyte function-associated antigen-1 (LFA-1) and intracellular adhesion molecule-1 (ICAM-1) has been implicated in inflammatory and immune diseases. Recently, a novel series of p-arylthio cinnamides has been described as potent antagonists of the LFA-1/ICAM-1 interaction. These compounds were found to bind to the I domain of LFA-1 using two-dimensional NMR spectroscopy of 15N-labeled LFA-1 I domain. On the basis of NOE studies between compound 1 and the I domain of LFA-1, a model of the complex was constructed. This model revealed that compound 1 does not directly inhibit ICAM-1 binding by interacting with the metal ion dependent adhesion site (MIDAS). Instead, it binds to the previously proposed I domain allosteric site (IDAS) of LFA-1 and likely modulates the activation of LFA-1 through its interaction with this regulatory site. A fragment-based NMR screening strategy was applied to identify small, more water-soluble ligands that bind to a specific region of the IDAS. When incorporated into the parent cinnamide template, the resulting analogues exhibited increased aqueous solubility and improved pharmacokinetic profiles in rats, demonstrating the power of this NMR-based screening approach for rapidly modifying high-affinity ligands. |
---|---|
Bibliography: | ark:/67375/TPS-QM59FG23-5 istex:EBAF9EC61DB3DB771BA487C3D89DA66158AC7840 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0022-2623 1520-4804 |
DOI: | 10.1021/jm000503f |