Separation and Enrichment of Yeast Saccharomyces cerevisiae by Shape Using Viscoelastic Microfluidics

Yeast Saccharomyces cerevisiae (S. Cerevisiae) is one of the most attractive microbial species used for industrial production of value-added products and is an important model organism to understand the biology of the eukaryotic cells and humans. S. Cerevisiae has different shapes, such as spherical...

Full description

Saved in:
Bibliographic Details
Published in:Analytical chemistry (Washington) Vol. 93; no. 3; pp. 1586 - 1595
Main Authors: Liu, Ping, Liu, Hangrui, Yuan, Dan, Jang, Daniel, Yan, Sheng, Li, Ming
Format: Journal Article
Language:English
Published: United States American Chemical Society 26-01-2021
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Yeast Saccharomyces cerevisiae (S. Cerevisiae) is one of the most attractive microbial species used for industrial production of value-added products and is an important model organism to understand the biology of the eukaryotic cells and humans. S. Cerevisiae has different shapes, such as spherical singlets, budded doublets, and clusters, corresponding to phases of the cell cycle, genetic, and environmental factors. The ability to obtain high-purity populations of uniform-shaped S. Cerevisiae cells is of significant importance for a wide range of applications in basic biological research and industrial processes. In this work, we demonstrate shape-based separation and enrichment of S. Cerevisiae using a coflow of viscoelastic and Newtonian fluids in a straight rectangular microchannel. Due to the combined effects of lift inertial and elastic forces, this label-free and continuous separation arises from shape-dependent migration of cells from the Newtonian to the non-Newtonian viscoelastic fluid. The lateral position of S. Cerevisiae cells with varying morphologies is found to be dependent on cell major axis. We also investigate the effects of sheath and sample flow rate, poly­(ethylene oxide) (PEO) concentration and channel length on the performance of the viscoelastic microfluidic device for S. Cerevisiae enrichment and separation by shape. Moreover, the separation efficiency, cell extraction yield, and cell viability after sorting operations are studied.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0003-2700
1520-6882
DOI:10.1021/acs.analchem.0c03990