Quantifying the Short-Range Order in Amorphous Silicon by Raman Scattering
Quantification of the short-range order in amorphous silicon has been formulized using Raman scattering by taking into account established frameworks for studying the spectral line-shape and size dependent Raman peak shift. A theoretical line-shape function has been proposed for representing the obs...
Saved in:
Published in: | Analytical chemistry (Washington) Vol. 90; no. 13; pp. 8123 - 8129 |
---|---|
Main Authors: | , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
United States
American Chemical Society
03-07-2018
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Quantification of the short-range order in amorphous silicon has been formulized using Raman scattering by taking into account established frameworks for studying the spectral line-shape and size dependent Raman peak shift. A theoretical line-shape function has been proposed for representing the observed Raman scattering spectrum from amorphous-Si-based on modified phonon confinement model framework. While analyzing modified phonon confinement model, the term “confinement size” used in the context of nanocrystalline Si was found analogous to the short-range order distance in a-Si thus enabling one to quantify the same using Raman scattering. Additionally, an empirical formula has been proposed using bond polarizability model for estimating the short-range order making one capable to quantify the distance of short-range order by looking at the Raman peak position alone. Both the proposals have been validated using three different data sets reported by three different research groups from a-Si samples prepared by three different methods making the analysis universal. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0003-2700 1520-6882 |
DOI: | 10.1021/acs.analchem.8b01352 |