When Good Intentions Go Awry: Modification of a Recombinant Monoclonal Antibody in Chemically Defined Cell Culture by Xylosone, an Oxidative Product of Ascorbic Acid

With the advent of new initiatives to develop chemically defined media, cell culture scientists screen many additives to improve cell growth and productivity. However, the introduction or increase of supplements, typically considered beneficial or protective on their own, to the basal media or feed...

Full description

Saved in:
Bibliographic Details
Published in:Analytical chemistry (Washington) Vol. 87; no. 15; pp. 7529 - 7534
Main Authors: Chumsae, Chris, Hossler, Patrick, Raharimampionona, Haly, Zhou, Yu, McDermott, Sean, Racicot, Chris, Radziejewski, Czeslaw, Zhou, Zhaohui Sunny
Format: Journal Article
Language:English
Published: United States American Chemical Society 04-08-2015
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:With the advent of new initiatives to develop chemically defined media, cell culture scientists screen many additives to improve cell growth and productivity. However, the introduction or increase of supplements, typically considered beneficial or protective on their own, to the basal media or feed stream may cause unexpected detrimental consequences to product quality. For instance, because cultured cells are constantly under oxidative stress, ascorbic acid (vitamin C, a potent natural reducing agent) is a common additive to cell culture media. However, as reported herein, a recombinant monoclonal antibody (adalimumab) in cell culture was covalently modified by xylosone (molecular weight 148), an oxidative product of ascorbate. Containing reactive carbonyl groups, xylosone modifies various amines (e.g., the N-termini of the heavy and light chains and susceptible lysines), forming either hemiaminal (+148 Da) or Schiff base (imine, +130 Da) products. Our findings show, for the first time, that ascorbate-derived xylosone can contribute to an increase in molecular heterogeneity, such as acidic species. Our work serves as a reminder that additives to cell culture and their metabolites may become reactive and negatively impact the overall product quality and should be carefully monitored with any changes in cell culture conditions.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0003-2700
1520-6882
DOI:10.1021/acs.analchem.5b00801