Identification of Single-Nucleotide Polymorphisms by the Oligonucleotide Ligation Reaction: A DNA Biosensor for Simultaneous Visual Detection of Both Alleles

Although single nucleotide polymorphisms (SNPs) can be identified by direct hybridization with allele-specific oligonucleotide probes, enzyme-based genotyping methods offer much higher specificity and robustness. Among enzymatic methods, the oligonucleotide ligation reaction (OLR) offers the highest...

Full description

Saved in:
Bibliographic Details
Published in:Analytical chemistry (Washington) Vol. 81; no. 1; pp. 218 - 224
Main Authors: Toubanaki, Dimitra K, Christopoulos, Theodore K, Ioannou, Penelope C, Flordellis, Christodoulos S
Format: Journal Article
Language:English
Published: Washington, DC American Chemical Society 01-01-2009
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Although single nucleotide polymorphisms (SNPs) can be identified by direct hybridization with allele-specific oligonucleotide probes, enzyme-based genotyping methods offer much higher specificity and robustness. Among enzymatic methods, the oligonucleotide ligation reaction (OLR) offers the highest specificity for allele discrimination because two hybridization events are required for ligation. We report the development of a DNA biosensor that offers significant advantages over currently available methods for detection of OLR products: It allows simultaneous visual discrimination of both alleles using a single ligation reaction. Detection is complete within minutes without the need for any specialized instruments. It does not involve multiple cycles of incubation and washing. The dry-reagent format minimizes the pipetting steps. The need for qualified personnel is much lower than current methods. The principle of the assay is as follows: Following PCR amplification, a single OLR is performed using a biotinylated common probe and two allele-specific probes labeled with the haptens digoxigenin and fluorescein. Ligation products corresponding to the normal and mutant allele are double-labeled with biotin and either digoxigenin or fluorescein, respectively. The products are captured by antidigoxigenin or antifluorescein antibodies, or both, that are immobilized at the two test zones of the biosensor and react with antibiotin-functionalized gold nanoparticle reporters. The excess nanoparticles bind to biotinylated albumin that is immobilized at the control zone of the biosensor. The genotype is assigned by the characteristic red lines that appear at the two test zones. The proposed DNA biosensor constitutes a significant step toward point-of-care SNP genotyping.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0003-2700
1520-6882
DOI:10.1021/ac801870x