Electron-Beam Irradiation Effects on Phytochemical Constituents and Antioxidant Capacity of Pecan Kernels [Carya illinoinensis (Wangenh.) K. Koch] During Storage
Pecans kernels (Kanza and Desirable cultivars) were irradiated with 0, 1.5, and 3.0 kGy using electron-beam (E-beam) irradiation and stored under accelerated conditions [40 °C and 55−60% relative humidity (RH)] for 134 days. Antioxidant capacity (AC) using 2,2-diphenyl-1-picrylhydrazyl (DPPH) and ox...
Saved in:
Published in: | Journal of agricultural and food chemistry Vol. 57; no. 22; pp. 10732 - 10739 |
---|---|
Main Authors: | , , |
Format: | Journal Article |
Language: | English |
Published: |
Washington, DC
American Chemical Society
25-11-2009
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Pecans kernels (Kanza and Desirable cultivars) were irradiated with 0, 1.5, and 3.0 kGy using electron-beam (E-beam) irradiation and stored under accelerated conditions [40 °C and 55−60% relative humidity (RH)] for 134 days. Antioxidant capacity (AC) using 2,2-diphenyl-1-picrylhydrazyl (DPPH) and oxygen radical absorbance capacity (ORAC) assays, phenolic (TP) and condensed tannin (CT) content, high-performance liquid chromatography (HPLC) phenolic profile, tocopherol content, peroxide value (PV), and fatty acid profiles were determined during storage. Irradiation decreased TP and CT with no major detrimental effects in AC. Phenolic profiles after hydrolysis were similar among treatments (e.g., gallic and ellagic acid, catechin, and epicatechin). Tocopherol content decreased with irradiation (>21 days), and PV increased at later stages (>55 days), with no change in fatty acid composition among treatments. Color lightness decreased, and a reddish brown hue developed during storage. A proposed mechanism of kernel oxidation is presented, describing the events taking place. In general, E-beam irradiation had slight effects on phytochemical constituents and could be considered a potential tool for pecan kernel decontamination. |
---|---|
Bibliography: | http://dx.doi.org/10.1021/jf901719s ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0021-8561 1520-5118 |
DOI: | 10.1021/jf901719s |