Palaeoproterozoic metavolcanic and metasedimentary succession hosting the Dannemora iron ore deposits, Bergslagen region, Sweden

The Dannemora supracrustal inlier is located in the north-eastern part of the Bergslagen region in south-central Sweden and hosts the second largest iron ore deposit in the region. The metasupracrustal succession of the inlier consists of c. 1.9 Ga Palaeoproterozoic rocks that are mainly sub-alkalin...

Full description

Saved in:
Bibliographic Details
Published in:GFF Vol. 134; no. 2; pp. 71 - 85
Main Authors: Dahlin, P., Allen, R., Sjöström, H.
Format: Journal Article
Language:English
Published: Stockholm Taylor & Francis Group 01-06-2012
Taylor & Francis Ltd
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The Dannemora supracrustal inlier is located in the north-eastern part of the Bergslagen region in south-central Sweden and hosts the second largest iron ore deposit in the region. The metasupracrustal succession of the inlier consists of c. 1.9 Ga Palaeoproterozoic rocks that are mainly sub-alkaline, rhyolitic to dacitic, pyroclastic deposits, reworked pyroclastic deposits and metalimestone. It is c. 700-800-m thick and termed the Dannemora Formation. The formation is divided into lower and upper members and the former is in turn subdivided into subunits 1 and 2. The great thickness of individual pyroclastic deposits indicates deposition within a caldera. The rocks show characteristics of a pyroclastic origin by containing abundant pumice, cuspate and Y-shaped former glass shards, and fragmented crystals of quartz and subordinate feldspars. Scattered spherulites and lack of welding-compacted fiamme suggest that the lower member was slightly welded, where as the upper member contains sericite-replaced glass shards with preserved primary shapes indicating no welding. Undisturbed layers of ash-siltstone with normal grading and fluid-escape structures are attributed to subaqueous deposition below storm wave base in the eastern part of the inlier, where as erosion channels and cross-bedding in some of the volcaniclastic deposits imply deposition and reworking above wave base in the central part of the inlier. Epidote spots, previously interpreted as altered limestone fragments and an indicator for subaquatic deposition, are here reinterpreted as the result of selective alteration related to the intrusion of mafic dykes and to Ca release during dolomitisation of limestone.
ISSN:1103-5897
2000-0863
2000-0863
DOI:10.1080/11035897.2012.674551