Role of Molecular Modification and Protein Folding in the Nucleation and Growth of Protein–Metal–Organic Frameworks

Metal–organic frameworks (MOFs) are a class of porous nanomaterials that have been extensively studied as enzyme immobilization substrates. During in situ immobilization, MOF nucleation is driven by biomolecules with low isoelectric points. Investigation of how biomolecules control MOF self-assembly...

Full description

Saved in:
Bibliographic Details
Published in:Chemistry of materials Vol. 34; no. 18; pp. 8336 - 8344
Main Authors: Carpenter, Brooke P., Talosig, A. Rain, Mulvey, Justin T., Merham, Jovany G., Esquivel, Jamie, Rose, Ben, Ogata, Alana F., Fishman, Dmitry A., Patterson, Joseph P.
Format: Journal Article
Language:English
Published: American Chemical Society 27-09-2022
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Metal–organic frameworks (MOFs) are a class of porous nanomaterials that have been extensively studied as enzyme immobilization substrates. During in situ immobilization, MOF nucleation is driven by biomolecules with low isoelectric points. Investigation of how biomolecules control MOF self-assembly mechanisms on the molecular level is key to designing nanomaterials with desired physical and chemical properties. Here, we demonstrate how molecular modifications of bovine serum albumin (BSA) with fluorescein isothiocyanate (FITC) can affect MOF crystal size, morphology, and encapsulation efficiency. Final crystal properties are characterized using scanning electron microscopy (SEM), powder X-ray diffraction (PXRD), fluorescent microscopy, and fluorescence spectroscopy. To probe MOF self-assembly, in situ experiments were performed using cryogenic transmission electron microscopy (cryo-TEM) and X-ray diffraction (XRD). Biophysical characterization of BSA and FITC-BSA was performed using ζ potential, mass spectrometry, circular dichroism studies, fluorescence spectroscopy, and Fourier transform infrared (FTIR) spectroscopy. The combined data reveal that protein folding and stability within amorphous precursors are contributing factors in the rate, extent, and mechanism of crystallization. Thus, our results suggest molecular modifications as promising methods for fine-tuning protein@MOFs’ nucleation and growth.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0897-4756
1520-5002
DOI:10.1021/acs.chemmater.2c01903