Meridional circulation of gas into gaps opened by giant planets in three-dimensional low-viscosity disks
We examine the gas circulation near a gap opened by a giant planet in a protoplanetary disk. We show with high resolution 3D simulations that the gas flows into the gap at high altitude over the mid-plane, at a rate dependent on viscosity. We explain this observation with a simple conceptual model....
Saved in:
Published in: | Icarus (New York, N.Y. 1962) Vol. 232; pp. 266 - 270 |
---|---|
Main Authors: | , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Elsevier Inc
01-04-2014
Elsevier |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We examine the gas circulation near a gap opened by a giant planet in a protoplanetary disk. We show with high resolution 3D simulations that the gas flows into the gap at high altitude over the mid-plane, at a rate dependent on viscosity. We explain this observation with a simple conceptual model. From this model we derive an estimate of the amount of gas flowing into a gap opened by a planet with Hill radius comparable to the scale-height of a layered disk (i.e. a disk with viscous upper layer and inviscid midplane). Our estimate agrees with modern MRI simulations (Gressel, O., Nelson, R.P., Turner, N.J., Ziegler, U. [2013]. arXiv:1309.2871). We conclude that gap opening in a layered disk cannot slow down significantly the runaway gas accretion of Saturn to Jupiter-mass planets. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0019-1035 1090-2643 |
DOI: | 10.1016/j.icarus.2014.01.010 |