Integrated Strategy for Lead Optimization Based on Fragment Growing: The Diversity-Oriented-Target-Focused-Synthesis Approach
Over the past few decades, hit identification has been greatly facilitated by advances in high-throughput and fragment-based screenings. One major hurdle remaining in drug discovery is process automation of hit-to-lead (H2L) optimization. Here, we report a time- and cost-efficient integrated strateg...
Saved in:
Published in: | Journal of medicinal chemistry Vol. 61; no. 13; pp. 5719 - 5732 |
---|---|
Main Authors: | , , , , , , , , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
United States
American Chemical Society
12-07-2018
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Over the past few decades, hit identification has been greatly facilitated by advances in high-throughput and fragment-based screenings. One major hurdle remaining in drug discovery is process automation of hit-to-lead (H2L) optimization. Here, we report a time- and cost-efficient integrated strategy for H2L optimization as well as a partially automated design of potent chemical probes consisting of a focused-chemical-library design and virtual screening coupled with robotic diversity-oriented de novo synthesis and automated in vitro evaluation. The virtual library is generated by combining an activated fragment, corresponding to the substructure binding to the target, with a collection of functionalized building blocks using in silico encoded chemical reactions carefully chosen from a list of one-step organic transformations relevant in medicinal chemistry. The proof of concept was demonstrated using the optimization of bromodomain inhibitors as a test case, leading to the validation of several compounds with improved affinity by several orders of magnitude. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0022-2623 1520-4804 |
DOI: | 10.1021/acs.jmedchem.8b00653 |