Transparent Quasi-Random Structures for Multimodal Light Trapping in Ultrathin Solar Cells with Broad Engineering Tolerance

Waveguide modes are well-known to be a valuable light-trapping resource for absorption enhancement in solar cells. However, their scarcity in the thinnest device stacks compromises the multiresonant performance required to reach the highest efficiencies in ultrathin devices. We demonstrate that enri...

Full description

Saved in:
Bibliographic Details
Published in:ACS photonics Vol. 9; no. 8; pp. 2724 - 2735
Main Authors: Camarillo Abad, Eduardo, Joyce, Hannah J., Hirst, Louise C.
Format: Journal Article
Language:English
Published: American Chemical Society 17-08-2022
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Waveguide modes are well-known to be a valuable light-trapping resource for absorption enhancement in solar cells. However, their scarcity in the thinnest device stacks compromises the multiresonant performance required to reach the highest efficiencies in ultrathin devices. We demonstrate that enriching the modal structure on such reduced length-scales is possible by integrating transparent semiconductor/dielectric scattering structures to the device architecture as opposed to more widely studied metallic textures. This phenomenon allows transparent quasi-random structures to emerge as strong light-trapping candidates for ultrathin solar cells, given that their broad scattering profiles are well-suited to exploit the increased number of waveguide modes for multiresonant absorption enhancement. A thorough study of the design space of quasi-random textures comprising more than 1500 designs confirms the superiority of transparent structures over a metallic embodiment, identifies broad and flexible design requirements to achieve optimal performances, and demonstrates photon harvesting capabilities leading to 20% efficiency with an 80 nm GaAs absorber. Our light-trapping strategy can be applied to a wide range of material systems and device architectures, is compatible with scalable low-cost fabrication techniques, and can assist current trends to reach the highest efficiencies in ever-thinner photovoltaics.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2330-4022
2330-4022
DOI:10.1021/acsphotonics.2c00472