Detection of Distinct Distributions of Acetaminophen and Acetaminophen-Cysteine in Kidneys up to 10 μm Resolution and Identification of a Novel Acetaminophen Metabolite Using an AP-MALDI Imaging Mass Microscope

Drug distribution studies in tissue are crucial for understanding the pharmacokinetics and potential toxicity of drugs. Recently, matrix-assisted laser desorption ionization-mass spectrometry imaging (MALDI-MSI) has gained attention for drug distribution studies due to its high sensitivity, label-fr...

Full description

Saved in:
Bibliographic Details
Published in:Journal of the American Society for Mass Spectrometry Vol. 34; no. 7; pp. 1491 - 1500
Main Authors: Mamun, Md. Al, Rahman, Md. Muedur, Sakamoto, Takumi, Islam, Ariful, Oyama, Soho, Nabi, Md. Mahamodun, Sato, Tomohito, Kahyo, Tomoaki, Takahashi, Yutaka, Setou, Mitsutoshi
Format: Journal Article
Language:English
Published: United States American Chemical Society 05-07-2023
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Drug distribution studies in tissue are crucial for understanding the pharmacokinetics and potential toxicity of drugs. Recently, matrix-assisted laser desorption ionization-mass spectrometry imaging (MALDI-MSI) has gained attention for drug distribution studies due to its high sensitivity, label-free nature, and ability to distinguish between parent drugs, their metabolites, and endogenous molecules. Despite these advantages, achieving high spatial resolution in drug imaging is challenging. Importantly, many drugs and metabolites are rarely detectable by conventional vacuum MALDI-MSI because of their poor ionization efficiency. It has been reported that acetaminophen (APAP) and one of its major metabolites, APAP-Cysteine (APAP-CYS), cannot be detected by vacuum MALDI-MSI without derivatization. In this context, we showed the distribution of both APAP and APAP-CYS in kidneys at high spatial resolution (25 and 10 μm) by employing an atmospheric pressure-MALDI imaging mass microscope without derivatization. APAP was highly accumulated in the renal pelvis 1 h after drug administration, while APAP-CYS exhibited characteristic distributions in the outer medulla and renal pelvis at both 30 min and 1 h after administration. Interestingly, cluster-like distributions of APAP and APAP-CYS were observed in the renal pelvis at 10 μm spatial resolution. Additionally, a novel APAP metabolite, tentatively coined as APAP-butyl sulfate (APAP-BS), was identified in the kidney, brain, and liver by combining MSI and tandem MSI. For the first time, our study revealed differential distributions of APAP, APAP-CYS (in kidneys), and APAP-BS (in kidney, brain, and liver) and is believed to enhance the understanding of the pharmacokinetics and potential nephrotoxicity of this drug.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1044-0305
1879-1123
1879-1123
DOI:10.1021/jasms.3c00149