Scalable Quantum Photonics with Single Color Centers in Silicon Carbide

Silicon carbide is a promising platform for single photon sources, quantum bits (qubits), and nanoscale sensors based on individual color centers. Toward this goal, we develop a scalable array of nanopillars incorporating single silicon vacancy centers in 4H-SiC, readily available for efficient inte...

Full description

Saved in:
Bibliographic Details
Published in:Nano letters Vol. 17; no. 3; pp. 1782 - 1786
Main Authors: Radulaski, Marina, Widmann, Matthias, Niethammer, Matthias, Zhang, Jingyuan Linda, Lee, Sang-Yun, Rendler, Torsten, Lagoudakis, Konstantinos G, Son, Nguyen Tien, Janzén, Erik, Ohshima, Takeshi, Wrachtrup, Jörg, Vučković, Jelena
Format: Journal Article
Language:English
Published: United States American Chemical Society 08-03-2017
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Silicon carbide is a promising platform for single photon sources, quantum bits (qubits), and nanoscale sensors based on individual color centers. Toward this goal, we develop a scalable array of nanopillars incorporating single silicon vacancy centers in 4H-SiC, readily available for efficient interfacing with free-space objective and lensed-fibers. A commercially obtained substrate is irradiated with 2 MeV electron beams to create vacancies. Subsequent lithographic process forms 800 nm tall nanopillars with 400–1400 nm diameters. We obtain high collection efficiency of up to 22 kcounts/s optical saturation rates from a single silicon vacancy center while preserving the single photon emission and the optically induced electron-spin polarization properties. Our study demonstrates silicon carbide as a readily available platform for scalable quantum photonics architecture relying on single photon sources and qubits.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1530-6984
1530-6992
1530-6992
DOI:10.1021/acs.nanolett.6b05102