Rapid, Simple, and Inexpensive Spatial Patterning of Wettability in Microfluidic Devices for Double Emulsion Generation

Water-in-oil-in-water (w/o/w) double emulsion (DE) encapsulation has been widely used as a promising platform technology for various applications in the fields of food, cosmetics, pharmacy, chemical engineering, materials science, and synthetic biology. Unfortunately, DEs formed by conventional emul...

Full description

Saved in:
Bibliographic Details
Published in:Analytical chemistry (Washington) Vol. 93; no. 31; pp. 10955 - 10965
Main Authors: Liu, Hangrui, Piper, James A, Li, Ming
Format: Journal Article
Language:English
Published: Washington American Chemical Society 10-08-2021
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Water-in-oil-in-water (w/o/w) double emulsion (DE) encapsulation has been widely used as a promising platform technology for various applications in the fields of food, cosmetics, pharmacy, chemical engineering, materials science, and synthetic biology. Unfortunately, DEs formed by conventional emulsion generation approaches in most cases are highly polydisperse, making them less desirable for quantitative assays, controlled biomaterial synthesis, and entrapped ingredient release. Microfluidic devices can generate monodisperse DEs with controllable size, morphology, and production rate, but these generally require multistep fabrication processes and use of different solvents or bulky external instrumentation to pattern channel wettability. To overcome these limitations, we propose a rapid, simple, and inexpensive method to spatially pattern wettability in microfluidic devices for the continuous generation of monodisperse DEs. This is achieved by applying corona–plasma treatment to a select zone of the microchannel surface aided by a custom-designed corona resistance microchannel to strictly confine the plasma-treatment zone in a single polydimethylsiloxane (PDMS) microfluidic device. The properties of PDMS channel surfaces and key microchannel regions for DE generation are characterized under different levels of treatment. The size, shell thickness, and number of inner cores of generated DEs are shown to be highly controllable by tuning the phase flow rate ratios. Using DEs as templates, we successfully achieve a one-step generation and collection of gelatin microgels. Additionally, we demonstrate the biological capability of generated DEs by flow cytometric screening of the encapsulation and growth of yeast cells within DEs. We expect that the proposed approach will be widely used to create microfluidic devices with more complex wettability patterns.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0003-2700
1520-6882
DOI:10.1021/acs.analchem.1c01861