A Highly Anisotropic Cobalt(II)-Based Single-Chain Magnet: Exploration of Spin Canting in an Antiferromagnetic Array

In this article we report for the first time experimental details concerning the synthesis and full characterization (including the single-crystal X-ray structure) of the spin-canted zigzag-chain compound [Co(H2L)(H2O)]∞ [L = 4-Me-C6H4-CH2N(CPO3H2)2], which contains antiferromagnetically coupled, hi...

Full description

Saved in:
Bibliographic Details
Published in:Journal of the American Chemical Society Vol. 130; no. 44; pp. 14729 - 14738
Main Authors: Palii, Andrei V, Reu, Oleg S, Ostrovsky, Sergei M, Klokishner, Sophia I, Tsukerblat, Boris S, Sun, Zhong-Ming, Mao, Jiang-Gao, Prosvirin, Andrey V, Zhao, Han-Hua, Dunbar, Kim R
Format: Journal Article
Language:English
Published: United States American Chemical Society 05-11-2008
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this article we report for the first time experimental details concerning the synthesis and full characterization (including the single-crystal X-ray structure) of the spin-canted zigzag-chain compound [Co(H2L)(H2O)]∞ [L = 4-Me-C6H4-CH2N(CPO3H2)2], which contains antiferromagnetically coupled, highly magnetically anisotropic Co(II) ions with unquenched orbital angular momenta, and we also propose a new model to explain the single-chain magnet behavior of this compound. The model takes into account (1) the tetragonal crystal field and the spin−orbit interaction acting on each Co(II) ion, (2) the antiferromagnetic Heisenberg exchange between neighboring Co(II) ions, and (3) the tilting of the tetragonal axes of the neighboring Co units in the zigzag structure. We show that the tilting of the anisotropy axes gives rise to spin canting and consequently to a nonvanishing magnetization for the compound. In the case of a strong tetragonal field that stabilizes the orbital doublet of Co(II), the effective pseudo-spin-1/2 Hamiltonian describing the interaction between the Co ions in their ground Kramers doublet states is shown to be of the Ising type. An analytical expression for the static magnetic susceptibility of the infinite spin-canted chain is obtained. The model provides an excellent fit to the experimental data on both the static and dynamic magnetic properties of the chain.
Bibliography:Relations between the pseudo-spin-1/2 operators and magnetic field components defined in local and molecular frames, expressions for the components of the local g tensors defined in the molecular frame, and a CIF file for [Co(H2L)(H2O)]∞. This material is available free of charge via the Internet at http://pubs.acs.org.
istex:04AA383040B4F6B7B4330445D3FD761F44058CDF
ark:/67375/TPS-VJK5WBM2-B
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0002-7863
1520-5126
DOI:10.1021/ja8050052