Characterization of weathering profile in granites and volcanosedimentary rocks in West Africa under humid tropical climate conditions. Case of the Dimbokro Catchment (Ivory Coast)
In granitic rocks, various models of weathering profile have been proposed, but never for the hard rocks of West Africa. Besides, in the literature there is no description of the weathering profile in volcanosedimentrary rocks. Therefore, we propose three models describing the weathering profiles in...
Saved in:
Published in: | Journal of Earth System Science Vol. 122; no. 3; pp. 841 - 854 |
---|---|
Main Authors: | , , , , |
Format: | Journal Article |
Language: | English |
Published: |
India
Springer-Verlag
01-06-2013
Springer Nature B.V |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In granitic rocks, various models of weathering profile have been proposed, but never for the hard rocks of West Africa. Besides, in the literature there is no description of the weathering profile in volcanosedimentrary rocks. Therefore, we propose three models describing the weathering profiles in granites, metasediments, and volcanic rocks for hard rock formations located in West Africa. For each of these models proposed for granitic and volcanosedimentary rocks of the Dimbokro catchment, vertical layered weathering profiles are described, according to the various weathering and erosion cycles (specific to West Africa) that the geological formations of the Dimbokro catchment experienced from the Eocene to the recent Quaternary period. The characterization of weathering profiles is based on: i) bedrocks and weathering profile observations at outcrop, and ii) interpretation and synthesis of geophysical data and lithologs from different boreholes. For each of the geological formations (granites, metasediments, and volcanic rocks), their related weathering profile model depicted from top to bottom comprises four separate layers:
alloterite
,
isalterite
,
fissured layer
, and
fractured fresh basement
. These weathering profiles are systematically covered by a soil layer. Though granites, metasediments and volcanic rocks of the Dimbokro catchment experience the same weathering and erosion cycles during the palaeoclimatic fluctuations from Eocene to recent Quaternary period, they exhibit differences in thickness. In granites, the weathering profile is relatively thin due to the absence of iron crust which protects weathering products against dismantling. In metasediments and volcanic rocks iron crusts develop better than in granites; in these rocks the
alterite
are more resistant to dismantling. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0253-4126 0973-774X |
DOI: | 10.1007/s12040-013-0290-2 |