Bacteria-Mediated Hypoxia-Specific Delivery of Nanoparticles for Tumors Imaging and Therapy
The hypoxia region in a solid tumor has been recognized as a complex microenvironment revealing very low oxygen concentration and deficient nutrients. The hypoxic environment reduces the susceptibility of the cancer cells to anticancer drugs, low response of free radicals, and less proliferation of...
Saved in:
Published in: | Nano letters Vol. 16; no. 6; pp. 3493 - 3499 |
---|---|
Main Authors: | , , , |
Format: | Journal Article |
Language: | English |
Published: |
United States
American Chemical Society
08-06-2016
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The hypoxia region in a solid tumor has been recognized as a complex microenvironment revealing very low oxygen concentration and deficient nutrients. The hypoxic environment reduces the susceptibility of the cancer cells to anticancer drugs, low response of free radicals, and less proliferation of cancer cells in the center of the solid tumors. However, the reduced oxygen surroundings provide an appreciable habitat for anaerobic bacteria to colonize. Here, we present the bacteria-mediated targeting hypoxia to offer the expandable spectra for diagnosis and therapy in cancer diseases. Two delivery approaches involving a cargo-carrying method and an antibody-directed method were designed to deliver upconversion nanorods for imaging and Au nanorods for photothermal ablation upon near-infrared light excitation for two forms of the anaerobic Bifidobacterium breve and Clostridium difficile. The antibody-directed strategy shows the most effective treatment giving stronger imaging and longer retention period and effective therapy to completely remove tumors. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1530-6984 1530-6992 |
DOI: | 10.1021/acs.nanolett.6b00262 |