Crystal Structures for HIV-1 Reverse Transcriptase in Complexes with Three Pyridinone Derivatives: A New Class of Non-Nucleoside Inhibitors Effective against a Broad Range of Drug-Resistant Strains
In the treatment of AIDS, the efficacy of all drugs, including non-nucleoside inhibitors (NNRTIs) of HIV-1 reverse transcriptase (RT), has been limited by the rapid appearance of drug-resistant viruses. Lys103Asn, Tyr181Cys, and Tyr188Leu are some of the most common RT mutations that cause resistanc...
Saved in:
Published in: | Journal of medicinal chemistry Vol. 48; no. 24; pp. 7582 - 7591 |
---|---|
Main Authors: | , , , , , , , , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Washington, DC
American Chemical Society
01-12-2005
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In the treatment of AIDS, the efficacy of all drugs, including non-nucleoside inhibitors (NNRTIs) of HIV-1 reverse transcriptase (RT), has been limited by the rapid appearance of drug-resistant viruses. Lys103Asn, Tyr181Cys, and Tyr188Leu are some of the most common RT mutations that cause resistance to NNRTIs in the clinic. We report X-ray crystal structures for RT complexed with three different pyridinone derivatives, R157208, R165481, and R221239, at 2.95, 2.9, and 2.43 Å resolution, respectively. All three ligands exhibit nanomolar or subnanomolar inhibitory activity against wild-type RT, but varying activities against drug-resistant mutants. R165481 and R221239 differ from most NNRTIs in that binding does not involve significant contacts with Tyr181. These compounds strongly inhibit wild-type HIV-1 RT and drug-resistant variants, including Tyr181Cys and Lys103Asn RT. These properties result in part from an iodine atom on the pyridinone ring of both inhibitors that interacts with the main-chain carbonyl oxygen of Tyr188. An acrylonitrile substituent on R165481 substantially improves the activity of the compound against wild-type RT (and several mutants) and provides a way to generate novel inhibitors that could interact with conserved elements of HIV-1 RT at the polymerase catalytic site. In R221239, there is a flexible linker to a furan ring that permits interactions with Val106, Phe227, and Pro236. These contacts appear to enhance the inhibitory activity of R221239 against the HIV-1 strains that carry the Val106Ala, Tyr188Leu, and Phe227Cys mutations. |
---|---|
Bibliography: | istex:1FB48430CE31192C9D2B2A935BD341DF70648DD9 ark:/67375/TPS-61TJ8NF8-9 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0022-2623 1520-4804 |
DOI: | 10.1021/jm0500323 |