Crystal Structures for HIV-1 Reverse Transcriptase in Complexes with Three Pyridinone Derivatives:  A New Class of Non-Nucleoside Inhibitors Effective against a Broad Range of Drug-Resistant Strains

In the treatment of AIDS, the efficacy of all drugs, including non-nucleoside inhibitors (NNRTIs) of HIV-1 reverse transcriptase (RT), has been limited by the rapid appearance of drug-resistant viruses. Lys103Asn, Tyr181Cys, and Tyr188Leu are some of the most common RT mutations that cause resistanc...

Full description

Saved in:
Bibliographic Details
Published in:Journal of medicinal chemistry Vol. 48; no. 24; pp. 7582 - 7591
Main Authors: Himmel, Daniel M, Das, Kalyan, Clark, Arthur D, Hughes, Stephen H, Benjahad, Abdellah, Oumouch, Said, Guillemont, Jérôme, Coupa, Sophie, Poncelet, Alain, Csoka, Imre, Meyer, Christophe, Andries, Koen, Nguyen, Chi Hung, Grierson, David S, Arnold, Eddy
Format: Journal Article
Language:English
Published: Washington, DC American Chemical Society 01-12-2005
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In the treatment of AIDS, the efficacy of all drugs, including non-nucleoside inhibitors (NNRTIs) of HIV-1 reverse transcriptase (RT), has been limited by the rapid appearance of drug-resistant viruses. Lys103Asn, Tyr181Cys, and Tyr188Leu are some of the most common RT mutations that cause resistance to NNRTIs in the clinic. We report X-ray crystal structures for RT complexed with three different pyridinone derivatives, R157208, R165481, and R221239, at 2.95, 2.9, and 2.43 Å resolution, respectively. All three ligands exhibit nanomolar or subnanomolar inhibitory activity against wild-type RT, but varying activities against drug-resistant mutants. R165481 and R221239 differ from most NNRTIs in that binding does not involve significant contacts with Tyr181. These compounds strongly inhibit wild-type HIV-1 RT and drug-resistant variants, including Tyr181Cys and Lys103Asn RT. These properties result in part from an iodine atom on the pyridinone ring of both inhibitors that interacts with the main-chain carbonyl oxygen of Tyr188. An acrylonitrile substituent on R165481 substantially improves the activity of the compound against wild-type RT (and several mutants) and provides a way to generate novel inhibitors that could interact with conserved elements of HIV-1 RT at the polymerase catalytic site. In R221239, there is a flexible linker to a furan ring that permits interactions with Val106, Phe227, and Pro236. These contacts appear to enhance the inhibitory activity of R221239 against the HIV-1 strains that carry the Val106Ala, Tyr188Leu, and Phe227Cys mutations.
Bibliography:istex:1FB48430CE31192C9D2B2A935BD341DF70648DD9
ark:/67375/TPS-61TJ8NF8-9
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0022-2623
1520-4804
DOI:10.1021/jm0500323