Amplified Spontaneous Emission from Organic Phosphorescence Emitters

Organic gain materials (OGMs) currently used in organic lasers and optical amplifiers are focused on singlet-fluorescence materials, while triplet-phosphorescence-based OGMs have hardly been developed yet. Herein, we report a novel pure organic phosphorescence gain molecule (SBP) for optical amplifi...

Full description

Saved in:
Bibliographic Details
Published in:The journal of physical chemistry letters Vol. 13; no. 24; pp. 5461 - 5467
Main Authors: Zu, Guo, Li, Shuai, He, Jingping, Zhang, Haihua, Fu, Hongbing
Format: Journal Article
Language:English
Published: United States American Chemical Society 23-06-2022
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Organic gain materials (OGMs) currently used in organic lasers and optical amplifiers are focused on singlet-fluorescence materials, while triplet-phosphorescence-based OGMs have hardly been developed yet. Herein, we report a novel pure organic phosphorescence gain molecule (SBP) for optical amplification by stimulated emission from triplet states. The introduction of the benzophenone carbonyl group and sulfur atoms increases the spin orbit coupling constant of SBP, which accelerates the intersystem crossing (ISC) and phosphorescence processes. Experimental and theoretical results verify that the formation of the H-type dimer aggregate decreases the fluorescence radiation rate while accelerating the ISC rate, also enhancing the phosphorescence emission of SBP. Doping SBP molecules into a PMMA matrix can stabilize triplet excitons, yielding the maximum phosphorescence quantum yield of 18.9%. We realized triplet phosphorescent amplified spontaneous emission (ASE) at 557 nm from 30.0 wt % SBP@PMMA samples. Our results provide a novel strategy to develop triplet phosphor OGMs.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1948-7185
1948-7185
DOI:10.1021/acs.jpclett.2c01379